Fully Automated Serial Volumetric 3 Dimensional Brain MRI Assesses Grey Matter Volumes and Rate of Progression in a Case of Primary Progressive Multiple Sclerosis

Ted Rothstein*
Department of Neurology, George Washington University, USA

Abstract

Focal Multiple Sclerosis lesions in white matter (WM) are easily detected with conventional MRI as they have inflammatory properties which generate contrast. However, the burden of WM lesions does not explain the extent of clinical and cognitive impairments that commonly occur in MS patients. It is established that grey matter (GM) axonal loss in MS occurs early and plays a key role in disease progression, disability and cognitive dysfunction. Recent studies in patients with Primary Progressive Multiple Sclerosis (PPMS) suggest that progression and disability correlate directly with GM atrophy. Given its seminal importance, it is critical to define the degree to which GM structures are affected in MS patients. A new advanced MRI post processing technique (NeuroQuant) employs fully automated 3 dimensional volumetric MRI analysis of GM structures and produces a reliable assessment of GM volumes. Serial studies can quantify progression and rate of change. Serial NeuroQuant images were obtained in a 42 year old male with PPMS over 39 months and showed significant volume reductions in cortical GM and deep nuclei. NeuroQuant imaging was able to establish the degree to which progression had occurred, and helped to clarify GM contributions to his cognitive and clinical deterioration. Serial NeuroQuant confirmed that loss of GM was more predictive of clinical deterioration than WM abnormalities, supporting conclusions already drawn by PPMS histopathology.

Keywords: Grey matter analysis; Primary Progressive Multiple Sclerosis; Diagnostic Test assessment; Volumetric MRI

Introduction

WM abnormalities often fail to explain the source of an MS exacerbation or the degree of cognitive and physical impairment that MS patients experience, which has been identified as the “clinico-radiological paradox” [1,2]. It has become increasingly evident that GM demyelination occurs early, is frequent and extensive in MS, and critical to the development of clinical and cognitive disability [3-6]. There is evidence that GM damage accelerates and is more extensive in progressive forms of MS [7-11]. Fisniku et al. [8] studied over 20 years a number of clinically isolated syndrome (CIS) MS patients and determined that gray matter atrophy was a more dependable predictor of disability than burden of white matter plaque. Until recently, GM lesions have been difficult to detect using conventional MR imaging techniques [12-14]. For example, only 5% of histopathological lesions in the cortex are identified with standard FLAIR and T2 sequences [15]. A variety of new advanced MRI techniques including high resolution 7 Tesla imaging, Rapid Acquired Gradient ECHO, double inversion recovery, and magnetization transfer have improved visualization of GM lesions not previously identifiable [16-41]. Unfortunately, only a small fraction of lesions identified histopathologically are identified with these techniques [15,16]. Recognizing the importance of GM pathology in MS, it is essential to have a reliable method for accurately measuring the degree of GM pathology in this disease. One promising new MRI post processing technique is fully automated 3 dimensional volumetric brain segmentation (NeuroQuant), which is proven to be accurate for quantitative volume analysis of GM structures [42]. Longitudinal imaging studies have been used to predict those patients with Mild Cognitive Impairment destined to develop Alzheimer’s disease and help define the progression of dementia [42-47]. To date there have been few longitudinal MRI studies that have assessed the degree or rate of progression of GM lesions in MS patients.
I present a case report concerning a patient with PPMS who had a remarkable loss of volume in key GM structures over a period of 39 months, including cortical grey, hippocampus, thalamus, caudate, and amygdala, corresponding closely to his clinical and cognitive decline.

Case Report

A 42 year old African American male developed progressive cognitive impairment, abnormal behaviors, dysarthric and scanning speech, diffuse 4 extremity ataxia and bilateral hand tremors over a period of 5 years. He would become angry inappropriately, was forgetful and could not be relied upon to eat or take medication. He had become disoriented in time and place, had disturbed immediate verbal recall, slowed information processing and dyscalculia. A recent EDSS score was 8.0 and MMSE score declined from 23 to 11 over this period. Serial brain MRIs revealed increases of discrete white matter hyper intensities on axial FLAIR confirming the presence of dissemination in space and time. Three NeuroQuant images were obtained over 39 months and showed - as a percent of total brain volume - reductions of: cortical grey matter 10.37%, bilateral hippocampal volumes 20.6%, bi-thalamic volumes 14.5%, bi-caudate volumes 13.5%, amygdala volumes 11.18% and while the inferior lateral ventricle volumes increased by 50.69%. The relative change in total WM showed an increase of 4.7% (Table 1) (Figures 1-6).

Methods

Longitudinal 3 dimensional volumetric MR imaging studies were performed with an 8 channel phased array head coil. Images were processed using fully automated volumetric segmentation with a quantitative MR imaging software package (NeuroQuant v1.4, CorTechs Labs, San Diego, California) [42-46]. Image acquisition included a 3 plane localizer sequence and 3 dimensional volumetric T1 weighted gradient echo sequence acquired over an additional 7 minutes in a standard 1.5 Tesla General Electric imaging MRI unit. Image volumes obtained using NeuroQuant have been validated against manual segmentation and on the basis of those studies received approval for clinical use by the US Food and Drug Administration in measuring volumes of brain structures. The NeuroQuant quantitative MR imaging output compares a patient’s regional brain volumes with age and gender matched normative database taken as a percentage of total intracranial volume [42].

Discussion

WM Pathology has been the major focus of MS clinical assessment and research because of the ease of detection on MRI despite physical aspects such as fatigue, cognitive impairment, seizures, and physical disability which link to GM dysfunction. Moreover, WM abnormalities often fail to explain the source of an exacerbation or the degree of clinical and cognitive impairments MS patients’ experience. Extensive GM pathology has been shown to be a critical factor in clinical and cognitive impairment and may be the most important determinant of permanent disability [2-16]. Pathologic studies in MS have demonstrated widespread involvement of GM structures including the neocortex, hippocampus, thalamus, basal ganglia, cerebellum, and spinal cord [48-57].

Cortical lesions have been found to account for a greater

Table 1: Rate of Progression 2011-2015.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Cortical Grey Matter</td>
<td>410.38</td>
<td>379.1</td>
<td>367.81</td>
<td>-7.62%</td>
<td>-2.98%</td>
<td>-10.37%</td>
</tr>
<tr>
<td>White Matter</td>
<td>403.67</td>
<td>454.12</td>
<td>420.49</td>
<td>+12.50%</td>
<td>-7.41%</td>
<td>+4.17%</td>
</tr>
<tr>
<td>Hippocampus</td>
<td>4.95</td>
<td>4.63</td>
<td>3.93</td>
<td>-6.46%</td>
<td>-15.12%</td>
<td>-20.61%</td>
</tr>
<tr>
<td>Inferior Lateral Ventrices</td>
<td>2.9</td>
<td>3.51</td>
<td>4.37</td>
<td>+21.03%</td>
<td>+24.50%</td>
<td>+50.69%</td>
</tr>
<tr>
<td>Amygdala</td>
<td>3.04</td>
<td>2.73</td>
<td>2.7</td>
<td>-10.20%</td>
<td>-1.10%</td>
<td>-11.18%</td>
</tr>
<tr>
<td>Caudate</td>
<td>4.89</td>
<td>4.65</td>
<td>4.23</td>
<td>-4.91%</td>
<td>-9.03%</td>
<td>-13.50%</td>
</tr>
<tr>
<td>Thalamus</td>
<td>8.83</td>
<td>8.35</td>
<td>7.56</td>
<td>-5.44%</td>
<td>-9.58%</td>
<td>-14.50%</td>
</tr>
</tbody>
</table>
proportion of demyelination than WM lesions [22-35,58-64]. They are typically missed with conventional MRI and most of the new advanced MRI techniques are reported to detect only the “tip of the iceberg” [13-16]. NeuroQuant MRI technique can quantify GM cortical and deep nuclei volumes and can depict the rate at which damage produces volume reductions to these structures with serial studies [42-46].

Recent studies have reported substantial atrophy with neuronal loss in the hippocampus of MS patients [65-72]. The number and extent of lesions in the hippocampus also correlate with impaired visuospatial memory performance [66-68]. Geurts and colleagues collected hippocampal tissue samples from 19 patients with chronic MS and found that hippocampal demyelination was frequent and extensive [65]. Sicotte et al. [66] using high resolution MR imaging at 3T reported hippocampal atrophy in excess of global brain atrophy in relapsing and secondary progressive MS (SPMS) and was associated with deficits in memory encoding and retrieval. The hippocampus is known to play a crucial role in episodic memory formation and retrieval, and cell loss can account for much of the cognitive decline present in more than half of MS patients [73].

Houtchens et al. [74] used 3 dimensional volumetric MRI scans to assess a number of GM structures including thalamic volumes in 79 MS patients compared with 16 normal controls. They found a 16.8% reduction in thalamic volume in MS cases which correlated with impaired cognitive performance. Sepulcre et al. [5] used voxel based morphometric analysis to examine regional distribution of GM atrophy in 31 patients with PPMS and found bilateral thalamic atrophy compared with controls. There was also loss of GM in putamen, caudate, cortical, and infratentorial areas after 1 year follow up [5]. Minagar et al. [75] reviewed the underpinnings of thalamic damage in MS patients which resulted in cognitive decline, motor deficits, fatigue, pain syndromes, and oculomotor disturbances. In a pathologic study on distribution of GM demyelinating lesions in MS, Vercellino et al. [52] describe a case where thalamic demyelination was prominent, involving up to one third of the thalamus on coronal section. Rocca et al. [76] identified thalamic atrophy in MS patients using magnetization transfer MRI which correlated with long-term disability. Cifelli et al. [77] focused on the thalamic medial
dorsal nucleus on post mortem histopathologic analysis and used 3 dimensional magnetization-prepared fast gradient ECHO sequences in 14 SPMS patients and demonstrated about one third reduction in thalamic volumes compared to controls. Other studies by Zivadinov et al. [78,79] documented that thalamic atrophy was related to decreased information processing speed in MS.

Prinster et al. [25] using voxel based morphometry in 51 RRMS patients, found that caudate atrophy correlated with lesion load but not disease duration or clinical status. Bermel et al. [80,81] found bicaudate atrophy was 19% more extensive in MS patients, while increase in bicaudate ratio reflected subcortical atrophy and correlated with plaque lesion load and cognitive decline.

Conclusion

Volume loss of cerebral cortex and deep GM structures have been identified as the key finding in patients with PPMs and correlates better with clinical and cognitive disability than white matter lesion load [3-16]. The importance of GM integrity makes it essential to have an accurate means of measuring the degree and rate of change in GM atrophy. The importance of GM integrity makes it essential to have an accurate means of measuring the degree and rate of change in GM atrophy. The importance of GM integrity makes it essential to have an accurate means of measuring the degree and rate of change in GM atrophy.

67. Longoni G, Rocca MA, Pagani E, Riccielli GC, Colombo B, Rodegher M.

