Intracellular Vomit Signals and Cascades Downstream of Emetic Receptors: Evidence from the Least Shrew (Cryptotis parva) Model of Vomiting

Zhong W and Darmani NA*
Department of Basic Medical Sciences, Western University of Health Sciences, CA 91766, USA

Abstract

Nausea and vomiting are often considered as stressful symptoms of many diseases and drugs. In fact they are the most feared and debilitating side-effects of many cancer chemotherapeutics and the main cause of patient noncompliance. Despite years of substantial research, the intracellular emetic signals are at best poorly understood or remain unknown. Among different receptor-mediated emetic signaling cascades, one potential converging signal appears to be changes in the cytosolic concentration of Ca²⁺. In this editorial, we focus on Ca²⁺-related intracellular signals underlying emesis mediated by various emetogens. This strategy will help us understand common signaling mechanisms downstream of diverse emetogens and should therefore promote development of new antiemetics for the treatment nausea and vomiting caused by diverse diseases, drugs, as well as viruses and bacterial infections.

Keywords: Emetogens; Nausea; Intracellular emetic signals

Introduction

Nausea and vomiting (emesis) can be both a reason and/or symptoms of many diseases and drugs (e.g. chemotherapeutics [1-3], opiates [4]), conditions (pregnancy [5], motion sickness [6], food poisoning [7]), as well as bacterial [8] and viral infections [9]. Treatment of these symptoms require millions of patient visits per year to the doctors’ office or hospitals in the USA [10,11]. These symptoms are an important gastrointestinal problem which worsens the both quality of patient life and treatment. So it is noteworthy to explain and investigate mechanisms. Although anti-emetics can be effective against certain types of vomiting, oftentimes they do not provide complete protection and frequently lack broad-spectrum antiemetic efficacy. While nausea and vomiting are often considered as stressful symptoms of many diseases and drugs, they are the most feared and debilitating side-effects of cancer chemotherapeutics (e.g. cisplatin) in patients and the main cause of patient noncompliance [2,3]. Moreover, the cost of treatment of nausea and vomiting are considered economic burden to the healthcare service not only in the USA, but also in the world at large [10,11].

The role of different cell membrane-bound emetic receptors in vomiting is fairly well understood [1]. However, despite continued pre-clinical research, their corresponding downstream intracellular biochemical emetic mediators are at best poorly defined or remain unknown [1]. Of critical importance is that major knowledge gaps exist in the emesis field since not only limited information is available regarding intracellular emetic signals activated by diverse emetogens, but also virtually no evidence exist on potential point(s) of signal convergence (e.g. Ca²⁺) among different receptor-mediated emetic signaling cascades. One potential converging signal in vomiting appears to be changes in cytosolic Ca²⁺ concentration [12]. Extracellular Ca²⁺ gaining access inside cells can serve as a second messenger to initiate cellular events such as protein phosphorylation [13], neurotransmitter release [14] and Ca²⁺ influx [15]. We have recently provided an overview of the involvement Ca²⁺ mobilization in the process of vomiting evoked by diverse emetogens [12]. First, both selective emetogens that activate specific emetic receptors (such as tachykinergic NK [16], serotonergic 5-HT [17], dopaminergic D₂ [18]), as well as nonspecific emetogens (e.g. cisplatin), can evoke intracellular Ca²⁺ rise and subsequently initiate downstream Ca²⁺ activated emetic signals. Second, cisplatin, one of the oldest and most widely used cancer chemotherapeutics [19], induces nausea and vomiting via Ca²⁺-dependent release of multiple neurotransmitters (serotonin (5-HT), substance P (SP), dopamine, etc.) from central emetic loci in the dorsal vagal complex (DVC) of the...
In this review, we mainly discuss intracellular signal transduction systems involved in emesis evoked by diverse agents including emetic receptor agonists as well as cisplatin in the least shrew model, and highlight evidence for development of potential therapeutics for control of vomiting.

The involvement of intracellular Ca^{2+} release channels in emesis

Ca^{2+} induced Ca^{2+} release, refers to the process of extracellular Ca^{2+} influx via activation of voltage-operated Ca^{2+} channels in the cell membrane which subsequently mobilizes intracellular Ca^{2+} release from the sarcoplasmic/endoplasmic reticulum (SER) Ca^{2+} stores, resulting in a transient increase in the cytosolic concentration of Ca^{2+} [25,26]. Intracellular Ca^{2+} release from the SER into cytoplasm is mediated by inositol trisphosphate receptors (IP_{R}S) and ryanodine receptors (RyRs) found in the SER membrane [27].

The selective L-type Ca^{2+} channel (LTCC) agonist FPL64176 is an intracellular Ca^{2+} mobilizing agent and causes vomiting in all tested least shrews at a 10 mg/kg intraperitoneal (i.p.) dose [28,29]. Recently we explored the role of RyRs and IP_{R}S in intracellular Ca^{2+} release following FPL64176 evoked vomiting through pharmacological use of their respective inhibitors, dantrolene and 2-APB. We found FPL64176 induced emesis was insensitive to 2-APB, but in contrast, both the frequency and percentage of shrews vomiting were dose-dependently suppressed by dantrolene. Similar to FPL64176 mediated vomiting, we have shown that the 5-HT_{3} R-mediated vomiting was insensitive to 2-APB, but in contrast, both emetic parameters were dose-dependently suppressed by dantrolene [30].

The intracellular Ca^{2+} mobilizing agent thapsigargin, is a selective SERCa^{2+} ATPase (SERCA) inhibitor, which increases cytosolic Ca^{2+} concentration via an initial intracellular Ca^{2+} store depletion followed by extracellular Ca^{2+} entry [31-33]. In contrast with FPL64176 evoked vomiting, pre treatment with either dantrolene or 2-APB, led to significant reductions in the frequency of thapsigargin-induced vomiting [34]. We therefore concluded that both Ca^{2+} channels (RyRs and IP_{R}S) are involved in thapsigargin-induced vomiting. In another set of experiments [35], we found that pretreatment with the IP_{R} inhibitor 2-APB causes a significant reduction in NK_{R} agonist GR73632 induced emesis; however the RyR inhibitor dantrolene did not. Thus, we suggest that RyRs and IP_{R}S can be differentially modulated by various emetogens (Figure 1), and suppression of Ca^{2+} release from SER-stores through IP_{R}S and RyRs may be additional targets for the prevention of nausea and vomiting.

Figure 1: Summarized behavioural and biochemical evidence for intracellular emetic signals based on the least shrew emesis model.

In fact cisplatin-like chemotherapeutics can evoke early (day 1) and delayed (days 3-7) vomiting in almost all patients [21]. The neurotransmitter basis of CINV suggests that 5-HT and SP are concurrently released from EC cells of the GIT and brainstem emetic loci during both phases of vomiting [1,22]. 5-HT plays the dominant and SP a smaller role in the early phase. Indeed, both emetic loci including the enteric nervous system (ENS) and enterochromaffin cells (EC cells) of the gastrointestinal tract (GIT) via afferent/efferent vagal nerves in the process of chemotherapy-induced nausea and vomiting (CINV) [1].

In this review, we mainly discuss intracellular signal transduction systems involved in emesis evoked by diverse agents including emetic receptor agonists as well as cisplatin in the least shrew model, and highlight evidence for development of potential therapeutics for

control of vomiting.

The involvement of intracellular Ca^{2+} release channels in emesis

Ca^{2+} induced Ca^{2+} release, refers to the process of extracellular Ca^{2+} influx via activation of voltage-operated Ca^{2+} channels in the cell membrane which subsequently mobilizes intracellular Ca^{2+} release from the sarcoplasmic/endoplasmic reticulum (SER) Ca^{2+} stores, resulting in a transient increase in the cytosolic concentration of Ca^{2+} [25,26]. Intracellular Ca^{2+} release from the SER into cytoplasm is mediated by inositol trisphosphate receptors (IP_{R}S) and ryanodine receptors (RyRs) found in the SER membrane [27].

The selective L-type Ca^{2+} channel (LTCC) agonist FPL64176 is an intracellular Ca^{2+} mobilizing agent and causes vomiting in all tested least shrews at a 10 mg/kg intraperitoneal (i.p.) dose [28,29]. Recently we explored the role of RyRs and IP_{R}S in intracellular Ca^{2+} release following FPL64176 evoked vomiting through pharmacological use of their respective inhibitors, dantrolene and 2-APB. We found FPL64176 induced emesis was insensitive to 2-APB, but in contrast, both the frequency and percentage of shrews vomiting were dose-dependently suppressed by dantrolene. Similar to FPL64176 mediated vomiting, we have shown that the 5-HT_{3} R-mediated vomiting was insensitive to 2-APB, but in contrast, both emetic parameters were dose-dependently suppressed by dantrolene [30].

The intracellular Ca^{2+} mobilizing agent thapsigargin, is a selective SERCa^{2+} ATPase (SERCA) inhibitor, which increases cytosolic Ca^{2+} concentration via an initial intracellular Ca^{2+} store depletion followed by extracellular Ca^{2+} entry [31-33]. In contrast with FPL64176 evoked vomiting, pre treatment with either dantrolene or 2-APB, led to significant reductions in the frequency of thapsigargin-induced vomiting [34]. We therefore concluded that both Ca^{2+} channels (RyRs and IP_{R}S) are involved in thapsigargin-induced vomiting. In another set of experiments [35], we found that pretreatment with the IP_{R} inhibitor 2-APB causes a significant reduction in NK_{R} agonist GR73632 induced emesis; however the RyR inhibitor dantrolene did not. Thus, we suggest that RyRs and IP_{R}S can be differentially modulated by various emetogens (Figure 1), and suppression of Ca^{2+} release from SER-stores through IP_{R}S and RyRs may be additional targets for the prevention of nausea and vomiting.
Ca²⁺-related signaling pathways in emesis

The role of cAMP-PKA in vomiting: In mammals cyclic AMP (cAMP) is synthesized by 10 adenylyl cyclase isoforms [36]. One of the best-studied second messenger molecules downstream of selected G-protein coupled receptors is cAMP. It is an example for a transient and diffusible second messenger which is involved in signal propagation by integrating multiple intracellular signaling pathways [37]. cAMP activates protein kinase A (PKA) which results in phosphorylation of downstream intracellular signals. The adenylyl cyclase/cAMP/PKA signaling pathway can phosphorylate Ca²⁺-ion channels found on the plasma membrane and intracellular IP₃Rs [38]. These Ca²⁺-channels respectively increase extracellular Ca²⁺ influx and intracellular Ca²⁺ release [38]. The emetic role of cAMP has been well established, since microinjection of cAMP analogs (e.g. 8-bromocAMP) or forskolin (to enhance endogenous levels of cAMP) in the brainstem DVC emetic locus area postrema, not only can increase electrical activity of local neurons, but also induces vomiting in dogs [39]. Moreover, administration of 8 chloro cAMP in cancer patients can evoke nausea and vomiting [40]. Furthermore, phosphodiesterase inhibitors (PDEI) such as rolipram prevent cAMP metabolism and consequently increase cAMP tissue levels, which leads to excessive nausea and vomiting in humans [41]. In fact one major side-effect of older PDEIs is excessive nausea and vomiting which often precludes their use in the clinical setting [42]. In addition, we have demonstrated that increased brain cAMP levels-induced vomiting can be prevented by SQ22536, an inhibitor of adenyl cyclase [43] as well as PKA-phosphorylation is associated with peak vomit frequency during both immediate and delayed-phases of vomiting caused by either cisplatin or cyclophosphamide in the least shrew [43-45].

Activation and inhibition of CaMKII, ERK1/2, PKC and Akt are correspondingly linked to emesis induction and prevention: Vomit-associated Ca²⁺-mobilization as well as time-dependent Ca²⁺/calmodulin kinase IIa (CaMKIIa) and extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) phosphorylation in the least shrew brainstem occurs: i) following 5-HT₃R-evoked vomiting caused by its selective agonist 2-methyl-5-HT [30], ii) thapsigargin-induced emesis in the least shrew [34], as well as iii) SP tachykinin NK-R-mediated vomiting evoked by the selective NK-R agonist GR73632 in the least shrew [35]. Our additional behavioral evidence that inhibitors of CaMKII or ERK1/2 attenuate the evoked emesis provides further credence for involvement of CaMKII and ERK1/2 downstream of the discussed emetic receptors/effectors. In addition, other published evidence demonstrate that phosphorylation of protein kinase Ca/βII (PKCa/βII) and ERK1/2 in least shrew brainstem are associated with cisplatin-induced emesis [44,45]. In fact significant upregulation of ERK1/2 phosphorylation occurs with peak vomit frequency during both the immediate and delayed phases of emesis caused by cisplatin in the least shrew [44,45]. Our most recent publication shows the potential of pranlukast (currently used for the treatment of various respiratory disorders including asthma), as a new class of antiemetic for the suppression of the acute and delayed phases of cisplatin-evoked vomiting in the least shrew. Our related biochemical data indicates the mechanisms of antiemetic action of pranlukast are linked to suppression of cisplatin-elicted PKCa/βII, ERK1/2 and PKA activation (phosphorylation) in the least shrew brainstem [46].

Our other findings (unpublished data) from the least shrew reveal that phosphorylation of PKCa/βII, CaMKIIa, ERK1/2 and protein kinase B (Akt) contribute to FPL64176 mediated vomiting and are under regulation of Ca²⁺-mobilization which acts as one of the earliest and requisite events in the signal transduction pathways underlying emesis [12]. Indeed, FPL64176 exposure increased phosphorylation of these intracellular emetic signals in the brainstem in a time-dependent manner. In addition, in the presence of inhibitors of PKC (GF109203X), CaMKII (KN93), or ERK1/2 (U0126), both the frequency and percentage of shrews vomiting in response to FPL64176 were decreased. To evaluate the significance of Akt phosphorylation in FPL64176-induced vomiting, we also determined the anti-emetic effect of LY294002, an inhibitor of its upstream enzyme phosphatidylinositol-3 kinase (PI3K). Our results revealed that phosphorylation of Akt also contributes to FPL64176-evoked vomiting (unpublished data).

Conclusion

In both the periphery and the brainstem, emetic neurotransmitters/mediators may act independently or in combination to evoke vomiting. With the results reviewed in this editorial, multifaceted comprehensive investigations are required to ascertain the “cross talks of intracellular emetic signaling” among diverse specific and nonspecific emetogens including cisplatin. Although antiemetics may be clinically effective against some causes of vomiting, oftentimes they fail to provide complete protection and furthermore most lack broad-spectrum antiemetic efficacy [1]. Therefore, there are still unmet needs for broader and less expensive therapeutic options to improve antiemetic clinical efficacy. Additional studies should involve potential antiemetic compounds targeting common or specific intracellular emetic signaling pathways, alone or in combination with conventional drugs of choice.

Acknowledgment

The reviewed work from Dr. Darmani’s lab was supported by Western U Research Fund and NIH-NCI Grant (R01 CA207288) to N.A.D.

References


38. Darmani NA, Dey D, Chebolu S, Amos B, Kandpal R, Alkam T. Cisplatin causes over-expression of tachykinin NK1 receptors and increases...
